48 research outputs found

    Using Hybrid Agent-Based Systems to Model Spatially-Influenced Retail Markets

    Get PDF
    One emerging area of agent-based modelling is retail markets; however, there are problems with modelling such systems. The vast size of such markets makes individual-level modelling, for example of customers, difficult and this is particularly true where the markets are spatially complex. There is an emerging recognition that the power of agent-based systems is enhanced when integrated with other AI-based and conventional approaches. The resulting hybrid models are powerful tools that combine the flexibility of the agent-based methodology with the strengths of more traditional modelling. Such combinations allow us to consider agent-based modelling of such large-scale and complex retail markets. In particular, this paper examines the application of a hybrid agent-based model to a retail petrol market. An agent model was constructed and experiments were conducted to determine whether the trends and patterns of the retail petrol market could be replicated. Consumer behaviour was incorporated by the inclusion of a spatial interaction (SI) model and a network component. The model is shown to reproduce the spatial patterns seen in the real market, as well as well known behaviours of the market such as the "rocket and feathers" effect. In addition the model was successful at predicting the long term profitability of individual retailers. The results show that agent-based modelling has the ability to improve on existing approaches to modelling retail markets.Agents, Spatial Interaction Model, Retail Markets, Networks

    Using the Dynamic Microsimulation MINOS to Evidence the Effect of Energy Crisis Income Support Policy (Short Paper)

    Get PDF
    Rates of anxiety and depression are increasing due to financial stress caused by energy pricing with over half of UK homes unable to afford comfortable heating. UK Government policies to address this energy crisis have been implemented with limited evidence and substantial criticism. This paper applies the dynamic microsimulation MINOS, which utilises longitudinal Understanding Society data, to evidence change in mental well-being under the Energy Price Cap Guarantee and Energy Bill Support Scheme Policies. Results demonstrate an overall improvement in Short Form 12 Mental Component Score (SF12-MCS) both on aggregate and over data zone spatial areas for the Glasgow City region compared with a baseline of no policy intervention. This is work in progress and discussion highlights potential future work in other energy policy areas, such as Net Zero

    Understanding the Complex Behaviours of Electric Vehicle Drivers with Agent-Based Models in Glasgow

    Get PDF
    With the new policy aimed at advancing the phase-out date for the sale of new petrol and diesel cars and vans to 2030, the electric vehicle (EV) market share is expected to rise significantly in the coming years. This necessitates a deeper understanding of the driving and charging behaviours of EV drivers to accurately estimate future charging demand distribution and benefit for future infrastructure development. Traditional data-based approaches are limited in illustrating the granular spatiotemporal dynamics of individuals. Recent studies that use conventional vehicle trajectory data also have the sampling bias problem, despite their analyses being conducted at a finer resolution. Moreover, studies that use simulation approaches are often either based on limited behaviour rules for EV drivers or implemented in an artificial grid environment, showing limitations in reflecting real-world situations. To address the challenges, this work introduces an agent-based model (ABM) with complex behaviour rules for EV drivers, taking into account the drivers’ sensitivities to financial and time costs, as well as route deviation. By integrating the simulation model with the origin and destination information of drivers, this work can contribute to a better understanding of the behaviour patterns of EV drivers

    Exascale Agent-Based Modelling for Policy Evaluation in Real-Time (ExAMPLER)

    Get PDF
    Exascale computing can potentially revolutionise the way in which we design and build agent-based models (ABM) through, for example, enabling scaling up, as well as robust calibration and validation. At present, there is no exascale computing operating with ABM (that we are aware of), but pockets of work using High Performance Computing (HPC). While exascale computing is expected to become more widely available towards the latter half of this decade, the ABM community is largely unaware of the requirements for exascale computing for agent-based modelling to support policy evaluation. This project will engage with the ABM community to understand what computing resources are currently used, what we need (both in terms of hardware and software) and to set out a roadmap by which to make it happen

    Climate mitigation and adaptation action in the UK and devolved nations - A typology

    Full text link
    Typology document generated by policy review to inform a systematic review search strateg

    Exascale Agent-Based Modelling for Policy Evaluation in Real-Time (ExAMPLER)

    Get PDF
    Exascale computing can potentially revolutionise the way in which we design and build agent-based models (ABM) through, for example, enabling scaling up, as well as robust calibration and validation. At present, there is no exascale computing operating with ABM (that we are aware of), but pockets of work using High Performance Computing (HPC). While exascale computing is expected to become more widely available towards the latter half of this decade, the ABM community is largely unaware of the requirements for exascale computing for agent-based modelling to support policy evaluation. This project will engage with the ABM community to understand what computing resources are currently used, what we need (both in terms of hardware and software) and to set out a roadmap by which to make it happen

    Data assimilation and agent-based modelling: towards the incorporation of categorical agent parameters

    Get PDF
    This paper explores the use of a particle filter—a data assimilation method—to incorporate real-time data into an agent-based model. We apply the method to a simulation of real pedestrians moving through the concourse of Grand Central Terminal in New York City (USA). The results show that the particle filter does not perform well due to (i) the unpredictable behaviour of some pedestrians and (ii) because the filter does not optimise the categorical agent parameters that are characteristic of this type of model. This problem only arises because the experiments use real-world pedestrian movement data, rather than simulated, hypothetical data, as is more common. We point to a potential solution that involves resampling some of the variables in a particle, such as the locations of the agents in space, but keeps other variables such as the agents’ choice of destination. This research illustrates the importance of including real-world data and provides a proof of concept for the application of an improved particle filter to an agent-based model. The obstacles and solutions discussed have important implications for future work that is focused on building large-scale real-time agent-based models

    Evaluating the potential of agent-based modelling to capture consumer grocery retail store choice behaviours

    Get PDF
    Evolving consumer behaviours with regards to store and channel choice, shopping frequency, shopping mission and spending heighten the need for robust spatial modelling tools for use within retail analytics. In this paper, we report on collaboration with a major UK grocery retailer to assess the feasibility of modelling consumer store choice behaviours at the level of the individual consumer. We benefit from very rare access to our collaborating retailers’ customer data which we use to develop a proof-of-concept agent-based model (ABM). Utilising our collaborating retailers’ loyalty card database, we extract key consumer behaviours in relation to shopping frequency, mission, store choice and spending. We build these observed behaviours into our ABM, based on a simplified urban environment, calibrated and validated against observed consumer data. Our ABM is able to capture key spatiotemporal drivers of consumer store choice behaviour at the individual level. Our findings could afford new opportunities for spatial modelling within the retail sector, enabling the complexity of consumer behaviours to be captured and simulated within a novel modelling framework. We reflect on further model development required for use in a commercial context for location-based decision-making
    corecore